18 research outputs found

    Toward Data-Driven Radar STAP

    Full text link
    Catalyzed by the recent emergence of site-specific, high-fidelity radio frequency (RF) modeling and simulation tools purposed for radar, data-driven formulations of classical methods in radar have rapidly grown in popularity over the past decade. Despite this surge, limited focus has been directed toward the theoretical foundations of these classical methods. In this regard, as part of our ongoing data-driven approach to radar space-time adaptive processing (STAP), we analyze the asymptotic performance guarantees of select subspace separation methods in the context of radar target localization, and augment this analysis through a proposed deep learning framework for target location estimation. In our approach, we generate comprehensive datasets by randomly placing targets of variable strengths in predetermined constrained areas using RFView, a site-specific RF modeling and simulation tool developed by ISL Inc. For each radar return signal from these constrained areas, we generate heatmap tensors in range, azimuth, and elevation of the normalized adaptive matched filter (NAMF) test statistic, and of the output power of a generalized sidelobe canceller (GSC). Using our deep learning framework, we estimate target locations from these heatmap tensors to demonstrate the feasibility of and significant improvements provided by our data-driven approach in matched and mismatched settings.Comment: 39 pages, 24 figures. Submitted to IEEE Transactions on Aerospace and Electronic Systems. This article supersedes arXiv:2201.1071

    Retinal vascular tortuosity in schizophrenia and bipolar disorder

    Get PDF
    \u3cp\u3eThe micro-vasculature of retina and brain share common morphological, physiological, and pathological properties. Retina being easily accessible, retinal vascular examination provides an indirect assessment of cerebral vasculature. Considering the high prevalence of vascular morbidity in SCZ and BD a few studies have examined retinal vascular caliber and have reported increased retinal venular caliber in schizophrenia (SCZ). Retinal vascular tortuosity could serve as a better structural measure than caliber as it is static and less susceptible to pulse period variations. However, to date, no study has examined retinal vascular tortuosity in SCZ and bipolar disorder (BD). Hence, we examined retinal vascular tortuosity in comparison with healthy volunteers (HV). We included 255 subjects (78 HV, 79 SCZ, and 86 BD) in the age range of 18 to 50 years. Trained personnel acquired images using a non-mydriatic fundus camera. To measure the average retinal arteriolar tortuosity index (RATI) and retinal venular tortuosity index (RVTI), we used a previously validated, semi-automatic algorithm. The results showed significant differences across the three groups in RATI but not in RVTI; both BD and SCZ had significantly increased RATI compared to HV. There was also a significant difference between SCZ and BD, with BD having higher RATI. If shown to be of predictive utility in future longitudinal studies, it has the potential to identify patients at risk of development of adverse vascular events. As retinal vascular imaging is non-invasive and inexpensive, it could serve as a proxy marker and window to cerebral vasculature.\u3c/p\u3

    Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive–compulsive disorder: protocol for an open-label follow-up study

    No full text
    International audienceIntroduction Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive–compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD.Methods and analysis Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS.Ethics and dissemination The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings

    Retinal vascular fractal dimension in bipolar disorder and schizophrenia

    Get PDF
    Background: Bipolar disorder (BD) and schizophrenia (SCZ), are associated with greater vascular co-morbidities and adverse vascular events. Owing to shared developmental origins and morphology, retinal vasculature is a proxy assessment measure of the cerebral vasculature. Although retinal vascular fractal dimension (Df), a measure of vascular geometry and complexity of branching, has been shown to be directly associated with cerebrovascular pathology, it has not been examined in SCZ and BD. Methods: We studied 277 participants (92 healthy volunteers, 98 SCZ, and 87 BD) from 18 to 50 years of age. Images were acquired by trained personnel using a non-mydriatic fundus camera and the retinal vascular Df was calculated by the box-counting method using an automated algorithm. The average Df across the left and right eyes were calculated. Results: Both SCZ and BD had significantly increased Df compared to HV despite controlling for possible confounding factors. However, there was no significant difference between SCZ and BD. These findings suggest abnormal retinal vascular Df in psychoses. Limitations: The study design was cross-sectional, and patients were on medications. Confound of lifestyle factors such as diet and exercise, if any, was not controlled. Sub-group analysis between BD-I and BD-II was not performed in view of the small sample. Conclusions: Considering the easy accessibility, affordability, and non-invasive nature of the examination, retinal vascular Df could serve as a surrogate marker for cerebral vascular abnormality and could potentially identify BD and SCZ patients at risk of developing adverse vascular events

    Retinal vascular abnormalities in schizophrenia and bipolar disorder:a window to the brain

    No full text
    \u3cp\u3eOBJECTIVES: The examination of retinal microvascular abnormalities through fundus photography is currently the best available non-invasive technique for assessment of cerebral vascular status. Several studies in the last decade have reported higher incidences of adverse cerebrovascular events in Schizophrenia (SCZ) and bipolar disorder (BD). However, retinal microvasculature abnormalities in SCZ and BD have remained under-explored, and no study has compared this aspect of SCZ and BD till date.\u3c/p\u3e\u3cp\u3eMETHODS: Retinal Images of 100 SCZ patients, BD patients, and healthy volunteers each were acquired by trained individuals using a non-mydriatic camera with a 40-degree field of view. The retinal images were quantified using a valid semi-automated method. The average of left and right eye diameters of the venules and arterioles passing through the extended zone between 0.5 and 2 disc diameters from the optic disc were calculated.\u3c/p\u3e\u3cp\u3eRESULTS: The groups differed significantly with respect to average diameters of both retinal venules (P < 0.001) and retinal arterioles (P < 0.001), after controlling for age and sex. Both SCZ and BD patients had significantly narrower arterioles and wider venules compared to HV. There were also significant differences between SCZ and BD patients; patients with BD had narrower arterioles and wider venules.\u3c/p\u3e\u3cp\u3eCONCLUSION: Considering the affordability and easy accessibility of the investigative procedure, retinal microvascular examination could serve as a potential screening tool to identify individuals at risk for adverse cerebrovascular events. The findings of the current study also provide a strong rationale for further systematic examination of retinal vascular abnormalities in SCZ and BD.\u3c/p\u3

    Retinal vascular tortuosity in schizophrenia and bipolar disorder

    No full text
    The micro-vasculature of retina and brain share common morphological, physiological, and pathological properties. Retina being easily accessible, retinal vascular examination provides an indirect assessment of cerebral vasculature. Considering the high prevalence of vascular morbidity in SCZ and BD a few studies have examined retinal vascular caliber and have reported increased retinal venular caliber in schizophrenia (SCZ). Retinal vascular tortuosity could serve as a better structural measure than caliber as it is static and less susceptible to pulse period variations. However, to date, no study has examined retinal vascular tortuosity in SCZ and bipolar disorder (BD). Hence, we examined retinal vascular tortuosity in comparison with healthy volunteers (HV). We included 255 subjects (78 HV, 79 SCZ, and 86 BD) in the age range of 18 to 50 years. Trained personnel acquired images using a non-mydriatic fundus camera. To measure the average retinal arteriolar tortuosity index (RATI) and retinal venular tortuosity index (RVTI), we used a previously validated, semi-automatic algorithm. The results showed significant differences across the three groups in RATI but not in RVTI; both BD and SCZ had significantly increased RATI compared to HV. There was also a significant difference between SCZ and BD, with BD having higher RATI. If shown to be of predictive utility in future longitudinal studies, it has the potential to identify patients at risk of development of adverse vascular events. As retinal vascular imaging is non-invasive and inexpensive, it could serve as a proxy marker and window to cerebral vasculature

    Association between retinal vascular measures and brain white matter lesions in schizophrenia

    No full text
    OBJECTIVE: Recent studies have examined retinal vascular abnormalities in schizophrenia as retinal vascular imaging is a non-invasive proxy to cerebral microvasculature. However, relation between retinal vascular abnormalities and brain structure is not well examined in schizophrenia. Hence in this study, for the first time, we examined the relationship between retinal vascular measures and brain white matter lesions in schizophrenia. We examined brain white matter lesions as they are considered a predictive marker for future adverse cerebrovascular event. METHODS: We acquired retinal vascular images of both eyes using a non-mydriatic camera and calculated retinal vascular diameter, tortuosity, trajectory and fractal dimension using validated methods. All patients underwent Magnetic Resonance Imaging of bran and we computed white matter hypo-intensities using Freesurfer software. We performed a linear regression analysis to examine the relationship between white matter hypo-intensities and retinal vascular measures controlling for age, sex, fasting blood sugar, creatinine, whole-brain volume, and antipsychotic dose. RESULTS: The regression model was significant in Schizophrenia patients (R=0.983;R2 =0.966;-F=10.849;p = 0.008) but not in healthy volunteers (R=0.828;R2 =0.686;F=0.182; p = 0.963). Among the retinal vascular measures, arterial tortuosity (β = 0.963;p-0.002), tortuosity (β = -1.002;p = 0.001) and fractal dimension (β = -0.688;p = 0.014) were significant predictors of white matter lesions. DISCUSSION: The current study's findings support the conclusion that retinal vascular fractal dimension and tortuosity are associated with changes in cerebral white matter and may be considered proxy markers for cerebral microvasculature in schizophrenia. Considering the relationship between white matter lesions and stroke, these observations could have important clinical implications to screen schizophrenia patients for risk of adverse cerebrovascular event

    Retinal vascular abnormalities in schizophrenia and bipolar disorder:A window to the brain

    Get PDF
    OBJECTIVES: The examination of retinal microvascular abnormalities through fundus photography is currently the best available non-invasive technique for assessment of cerebral vascular status. Several studies in the last decade have reported higher incidences of adverse cerebrovascular events in Schizophrenia (SCZ) and bipolar disorder (BD). However, retinal microvasculature abnormalities in SCZ and BD have remained under-explored, and no study has compared this aspect of SCZ and BD till date. METHODS: Retinal Images of 100 SCZ patients, BD patients, and healthy volunteers each were acquired by trained individuals using a non-mydriatic camera with a 40-degree field of view. The retinal images were quantified using a valid semi-automated method. The average of left and right eye diameters of the venules and arterioles passing through the extended zone between 0.5 and 2 disc diameters from the optic disc were calculated. RESULTS: The groups differed significantly with respect to average diameters of both retinal venules (P < 0.001) and retinal arterioles (P < 0.001), after controlling for age and sex. Both SCZ and BD patients had significantly narrower arterioles and wider venules compared to HV. There were also significant differences between SCZ and BD patients; patients with BD had narrower arterioles and wider venules. CONCLUSION: Considering the affordability and easy accessibility of the investigative procedure, retinal microvascular examination could serve as a potential screening tool to identify individuals at risk for adverse cerebrovascular events. The findings of the current study also provide a strong rationale for further systematic examination of retinal vascular abnormalities in SCZ and BD

    Association between retinal vascular measures and brain white matter lesions in schizophrenia

    Get PDF
    OBJECTIVE: Recent studies have examined retinal vascular abnormalities in schizophrenia as retinal vascular imaging is a non-invasive proxy to cerebral microvasculature. However, relation between retinal vascular abnormalities and brain structure is not well examined in schizophrenia. Hence in this study, for the first time, we examined the relationship between retinal vascular measures and brain white matter lesions in schizophrenia. We examined brain white matter lesions as they are considered a predictive marker for future adverse cerebrovascular event. METHODS: We acquired retinal vascular images of both eyes using a non-mydriatic camera and calculated retinal vascular diameter, tortuosity, trajectory and fractal dimension using validated methods. All patients underwent Magnetic Resonance Imaging of bran and we computed white matter hypo-intensities using Freesurfer software. We performed a linear regression analysis to examine the relationship between white matter hypo-intensities and retinal vascular measures controlling for age, sex, fasting blood sugar, creatinine, whole-brain volume, and antipsychotic dose. RESULTS: The regression model was significant in Schizophrenia patients (R=0.983;R2 =0.966;-F=10.849;p = 0.008) but not in healthy volunteers (R=0.828;R2 =0.686;F=0.182; p = 0.963). Among the retinal vascular measures, arterial tortuosity (β = 0.963;p-0.002), tortuosity (β = -1.002;p = 0.001) and fractal dimension (β = -0.688;p = 0.014) were significant predictors of white matter lesions. DISCUSSION: The current study's findings support the conclusion that retinal vascular fractal dimension and tortuosity are associated with changes in cerebral white matter and may be considered proxy markers for cerebral microvasculature in schizophrenia. Considering the relationship between white matter lesions and stroke, these observations could have important clinical implications to screen schizophrenia patients for risk of adverse cerebrovascular event

    Examination of retinal vascular trajectory in schizophrenia and bipolar disorder

    Get PDF
    Aim: Evidence suggests microvascular dysfunction (wider retinal venules and narrower arterioles) in schizophrenia (SCZ) and bipolar disorder (BD). The vascular development is synchronous with neuronal development in the retina and brain. The retinal vessel trajectory is related to retinal nerve fiber layer thinning and cerebrovascular abnormalities in SCZ and BD and has not yet been examined. Hence, in this study we examined the retinal vascular trajectory in SCZ and BD in comparison with healthy volunteers (HV). Methods: Retinal images were acquired from 100 HV, SCZ patients, and BD patients, respectively, with a non-mydriatic fundus camera. Images were quantified to obtain the retinal arterial and venous trajectories using a validated, semiautomated algorithm. Analysis of covariance and regression analyses were conducted to examine group differences. A supervised machine-learning ensemble of bagged-trees method was used for automated classification of trajectory values. Results: There was a significant difference among groups in both the retinal venous trajectory (HV: 0.17 ± 0.08; SCZ: 0.25 ± 0.17; BD: 0.27 ± 0.20; P < 0.001) and the arterial trajectory (HV: 0.34 ± 0.15; SCZ: 0.29 ± 0.10; BD: 0.29 ± 0.11; P = 0.003) even after adjusting for age and sex (P < 0.001). On post-hoc analysis, the SCZ and BD groups differed from the HV on retinal venous and arterial trajectories, but there was no difference between SCZ and BD patients. The machine learning showed an accuracy of 86% and 73% for classifying HV versus SCZ and BD, respectively. Conclusion: Smaller trajectories of retinal arteries indicate wider and flatter curves in SCZ and BD. Considering the relation between retinal/cerebral vasculatures and retinal nerve fiber layer thinness, the retinal vascular trajectory is a potential marker for SCZ and BD. As a relatively affordable investigation, retinal fundus photography should be further explored in SCZ and BD as a potential screening measure
    corecore